Abstract: This paper investigates Load Frequency Control of multi area inter connected power system having different turbines with PID controller. The performance and validity of designed controllers were checked on multi area interconnected power system with various Step Load Perturbations. Finally, the performance of proposed controllers was compared with conventional controller and from the result it was proved that the proposed controller exhibits superior performance than conventional controller for various Step Load Perturbations.

Index Terms—PID Tuning, Metaheuristic Algorithms, Multi-area Power System, Load Frequency Control, Step Load Perturbations.

I. INTRODUCTION

As the demand changes the system voltage and frequency deviate from the initial values causing an unpredictable small amount of change in the state of the system. An automatic control system is assigned to detect the change and it initiates a set of counter control actions in order to nullify effectively and at the earliest any deviation in the state of the system. In any interconnected system deviation of the state of the system may well disturb the state of economic operation and may even cause overloads on the interconnecting ties with the risk of having lost the continuity of operation. The obvious way to maintain a perfect power balance at each bus could be to continuously keep the generated powers in balance with the changing load power P_D and Q_D. The real power is controlled through the turbine torque while the reactive power is controlled via exciter[3].

Automatic control of generators involves two major control loops in power system equipped with large generators. These two major loops are Automatic Voltage Regulator (AVR) and Automatic Load Frequency Control (ALFC) loops. This paper mainly concentrated on Load Frequency Control (LFC). The ALFC loop regulates the real power output & corresponding frequency of the generator power output. The primary ALFC loop senses the turbine speed and controls the operation of the control valves of turbine power input via the speed governor. When the power system is subjected to sudden load increments (ΔP_D), the turbine output ΔP_T is increased to a new value as rapidly as the primary ALFC loop permits. However, this load increase causes negative frequency error. It causes a slow growing positive integrator output and a corresponding increase in power reference setting. The signal (Δf) fed to the integrator is known as Area Control Error (ACE). Integral control will give rise to zero static frequency error following a step load change i.e the secondary ALFC loop eliminates the frequency error. In order to keep values of system frequency and tie-line power within the limit during the sudden and normal load conditions, there is several control techniques have been proposed for the LFC of power system. The same authors have explained a critical literature survey on different control strategies of power system LFC.

In this paper, Ant Colony Optimization (ACO) and Pattern Search (PS) PID tuning methods were used for Load Frequency Control (LFC) in three area interconnected power system. The performance of ACO-PID and PS-PID were compared with conventional PID controller.
Pattern Search Optimization (PS) is a new optimization method and is used for solving the different optimization issues[2]. In this paper Ant Colony Optimization, Pattern Search technique was implemented for tuning of PID controller of three area power system.

Comparative study:

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Name of the Authors</th>
<th>Title of the paper</th>
<th>Synopsis</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Naimul Hasan</td>
<td>An Overview of AGC Strategies in Power System.</td>
<td>This paper presents a comprehensive literature review of the Philosophies of automatic generation control (AGC) of power systems. This article is aimed to highlight the various control and structural aspects of AGC used in the power systems. The AGC schemes based on power system models and control strategies are reviewed.</td>
</tr>
<tr>
<td>2</td>
<td>Wen Tan</td>
<td>Unified Tuning of PID Load Frequency Controller for Power Systems via IMC</td>
<td>A unified PID tuning method for load frequency control of power systems is discussed in this paper. The tuning method is based on the two-degree-of-freedom (TDF) internal model control (IMC) design method and a PID approximation procedure. The time-domain performance and robustness of the resulting PID controller is related to two tuning parameters, and robust tuning of the two parameters is discussed. The method is applicable to power systems with non-reheated, reheated, and hydro turbines.</td>
</tr>
<tr>
<td>3</td>
<td>Ibraheem, Prabhat Kumar, D. P. Kothari</td>
<td>Recent Philosophies of Automatic Generation Control Strategies in P S</td>
<td>This paper presents a critical review of the recent philosophies in the area of AGC. Due attention has also been paid to recent developments, such as AGC schemes based on the concepts of neural networks and fuzzy logic and the incorporation of parallel AC/HVDC links in the designs of AGC regulators. Emphasis has been given to categorizing various AGC strategies reported in the literature that highlights their salient features.</td>
</tr>
<tr>
<td>4</td>
<td>K. Wadhwa, Sourav Choube y, Pardeep Nain</td>
<td>Study of Automatic Generation Control Of two area thermal-thermal system with GRC and without GRC</td>
<td>In this paper presenting the critical literature review and an up-to-date bibliography on the AGC of power system. Various control aspects concerning the AGC problem have been highlighted. Simulation of AGC schemes based on an interconnected two area thermal-thermal system with generation rate constraints (GRC) and without GRC are studied using MATLAB. Here they shown only simulation results for the case of with-out GRC, no simulation results for with GRC.</td>
</tr>
<tr>
<td>5</td>
<td>Eisa Bashier M. Tayeb</td>
<td>Automation of Interconnected Power System using Fuzzy Controller</td>
<td>In this paper, a fuzzy logic controller is proposed for load frequency control problem of interconnected power system. The study has been designed for a two area interconnected power system. Here there is not proper comparison between the controllers.</td>
</tr>
<tr>
<td>No.</td>
<td>Authors</td>
<td>Title</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>---------</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>M. Ismail, M. A. Mustafa Hassan</td>
<td>Load Frequency Control Adaptation Using Artificial Intelligent Techniques for One and Two Different Areas Power System</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Surya Prakash S. K. Sinha</td>
<td>Application of artificial intelligence in load frequency control of Inter-connected P.S.</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>R. N. Patel, S. K. Sinha, R. Prasad</td>
<td>Design of a Robust Controller for AGC with Combined Intelligence Techniques</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>P.V.R. Prasad, Dr. M. Sai Veeraju</td>
<td>Fuzzy Logic Controller Based Analysis of Load Frequency Control of Two Area Inter-connected Power System</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>G. Panda, Sidhartha, P and C. Ardil</td>
<td>Automatic Generation Control of Multi-Area Electric Energy Systems Using Modified GA</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>K. P. Singh Parmar, S. Majhi, D. P. Kothari</td>
<td>Optimal Load Frequency Control of an Interconnected Power System</td>
<td></td>
</tr>
</tbody>
</table>

In this proposed study, a new GA, PSO and fuzzy Algorithm based PID has been introduced for automatic load frequency control of a single & multi area power system and shown that the proposed control algorithms are effective and provides significant improvement in system performance.

This paper presents the use of artificial intelligence to study the load frequency control of interconnected power system. Here the control methodology is developed using Artificial Neural Network (ANN) and Fuzzy Logic controller (FLC) for interconnected hydro-thermal power system. A comparison of Fuzzy controller and ANN controller were made, from the comparison they shows that of proposed ANN based approach is superior to Fuzzy one for different loading conditions.

In this work Artificial Intelligence (AI) techniques like Fuzzy logic, GA and PSO have been used to improve the performance of the Automatic Generation Control system. Instead of applying GA and PSO independently for optimizing the parameters of the conventional AGC with PI controller, an intelligent tuned Fuzzy logic controller (acting as the secondary controller in the AGC system) has been designed. The controller gives an improved dynamic performance for both hydro-thermal and thermal-thermal power systems under a variety of operating conditions.

In this paper, they compared the results of PI and PID controller with fuzzy PI controller for two area power system in the presence of parameters variation and non-linearity.

Here they present their pioneering work on AGC regulator design using Modified GA. A four area interconnected power system consisting of four identical power plants of reheat thermal turbines was considered for investigations.

Here an attempt has been made to design the optimal output feedback controller for a two area interconnected Thermal-Thermal Power system incorporating reheat type turbine in one of the areas. In this paper the proposed controllers are tested and their dynamic responses are compared with conventional controllers and observed that optimal state feedback controllers give good dynamic responses that satisfy the requirements of LFC.

Above table shows the comparative study of various controllers proposed by different authors
II. MODELING OF ELECTRIC POWER SYSTEM

The main difference between Load Frequency Control of multi-area system and that of single area system is, the frequency of each area of multi-area system should return to its nominal value and also the net interchange through the tie-line should return to the scheduled values. So a composite measure, called area control error (ACE), is used as the feedback variable. A decentralized controller can be tuned assuming that there is no tie-line exchange power, \(P_{tie} = 0 \). In this case the local feedback control will be \(u_i = -K_i(s)B_i \Delta f_i \). Thus load frequency controller for each area can be tuned independently. To illustrate the decentralized PID tuning method, consider a Three-Area power system with load perturbations. The system frequency deviation \(\Delta f_i \), the deviation in the tie-line power flow \(\Delta P_{tie} \), load disturbance \(\Delta P_{Li} \). The following sequence helps for development of block diagram of interconnected power system[1].

A. Governor Equations and its Modeling

If the load increases, the speed of the alternator reduces slightly. The governor of any thermal unit reacts to this speed variation and permits the entry of some more steam from the boiler to turbine which increases the speed. Many forms of the governor system have been devised all of which includes, the variation of the turbine alternator shaft speed as the basis on which the change of position of the turbine. Typical speed droop characteristics for most governor range between 5 to 10%. The block diagram of speed governor system is shown in Fig. 1[5,7].

The transfer function of speed governor with drooping characteristics can be represented as

\[
P_c(s) = \frac{K_{sg}}{T_{sg}S+1} \Delta x_e
\]

\[
\Delta w(s) = \Delta F(s)
\]

Fig. 1 Speed Governor with drooping characteristics

B. Turbine Equations and its Modeling

Turbine dynamics are very important because they also affect the overall response of the generating plant to load changes. Non-reheat turbines are first-order units and its block diagram is shown in Fig. 2 [5,7].

![Fig. 2 Non-Reheat Steam Turbine](image)

The transfer function of the non-reheat turbine is represented as

\[
G_{nr}(s) = \frac{1}{(1 + sT_{ti})} = \frac{\text{NUM}(s)}{\text{DEN}(s)}
\]

After passing the control valve the high pressure steam enters the turbine via the steam-chest that introduces time delay \(T_{nt} \) usually in order of 0.2 to 0.5s. The above model is modified to get Reheat Steam turbine as shown in Fig. 3.

![Fig. 3 Reheat Steam Turbine](image)

The Reheat turbines are modeled as second-order units because of presence of high and low steam pressure. It is more efficient and is used for modern-day large sets. The overall transfer function of Reheat turbine is

\[
G_{r}(s) = \frac{1 + sC_{rt}}{(1 + sT_{rt})(1 + sT_{lp})} = \frac{\text{NUM}(s)}{\text{DEN}(s)}
\]

C. Generator-Load Modeling

The Generator which is supplying local load and is not supplying power to another area via a tie-line. Suppose there is a real load change of
Due to the action of the turbine controllers, the generator increases its output by the amount ΔP_G. The net surplus power $\Delta P_G - \Delta P_D$ will be absorbed by the system of generator with load damping (D) effect. The Fig. 4 shows the block diagram of generator with load damping.

![Fig. 4 Generator with load damping](image)

The transfer function of generator with load damping or power system is

$$G_p(s) = \frac{1}{(D + Ms)(1 + sT_{ps})} = \frac{\text{NUM}_sg(s)}{\text{DEN}_sg(s)} \quad (4)$$

D. Tie-Line Modeling

Practically, all power systems now a days are interconnected by number of tie-lines with the neighboring areas. When the frequency variations in two areas are different, a power exchange occurs through the tie-line between the connected two areas. The block diagram of tie-line is as shown in Fig. 5 [7-8].

![Fig. 5 Tie-line Connections](image)

The Laplace transform of tie line is given as

$$\Delta P_{tieij}(s) = \frac{T_{ij}(\Delta F_i(s) - \Delta F_j(s))}{s} \quad (5)$$

Where ΔP_{tieij} is tie line power exchange between areas i and j, and T_{ij} is the tie-line synchronizing coefficient between area i and j.

By connecting all above blocks, we can get the overall block diagram of an interconnected electric power system. The Fig. 6 shows the block diagram representation of three area interconnected electric power system with step load variations. Let area 1, 2, 3 are non identical systems with Reheat, Non-reheat and Reheat turbines in all three areas respectively. The transfer function of each area with generator drooping characteristics can be defined as

![Fig. 6 Three Area Interconnected Electric Power System with Step Load Variations.](image)
The transfer functions of all three areas of interconnected power system are as follows (see appendix-I for Turbine, Speed Governor and Power system parameters) [4,12]:

For \(i \)th Area, \(G_i(s) = \frac{\text{NUM}_{sg}(s)\text{NUM}_{t}(s)\text{NUM}_{ps}(s)}{\text{DEN}_{sg}(s)\text{DEN}_{t}(s)\text{DEN}_{ps}(s) + \text{NUM}_{sg}(s)\text{NUM}_{t}(s)\text{NUM}_{ps}(s)/B_i} \) \((6) \)

For Area-1, the transfer function is \(G_1(s) = \frac{48.75s + 16.25}{s^4 + 16s^3 + 44.312s^2 + 55s + 16.25} \) \((7) \)

For Area-2, the transfer function is \(G_2(s) = \frac{106.25}{s^3 + 15.88s^2 + 42.46s + 106.25} \) \((8) \)

For Area-3, the transfer function is \(G_3(s) = \frac{53.125s + 10.625}{s^4 + 15.98s^3 + 44.05s^2 + 58.41s + 10.625} \) \((9) \)

III. Tuning of PID Controller

For industrial plant process, the conventional PID controllers are most commonly used. There are several prescriptive rules used for tuning of PID controller. The parallel form of a PID controller has transfer function [9]:

\[G_c(s) = K_p + \frac{K_i}{s} + sK_d = K_p(1 + \frac{1}{sT_i} + sT_d) \]

Where \(K_p = \) Proportional Gain constant; \(K_i = \) Integral Gain constant; \(T_i = \) Reset Time constant \(= K_p/K_i \); \(K_d = \) Derivative gain constant; \(T_d = \) Derivative time constant. The tuning of PID load frequency controller of multi-area power system that it has to bring frequency of each area to its nominal value and also the change in tie-line power should return to the scheduled values. So the combination of both, called Area Control Error (ACE), is used as feedback variable. For \(i \)th area, the ACE is defined as \(\text{ACE}_i = \Delta P_{tiei} + B_i \Delta f_i \) and Feedback control signal is \(u_i = -K_i(s) \text{ACE}_i \). A PID load frequency controller can be tuned assuming that there is no tie line power exchange i.e \(\Delta P_{tie} = 0 \). Now the feedback control signal \(u_i = -K_i(s) B_i \Delta f_i \). In this paper three different types PID controllers were designed i.e Conventional controller, Metaheuristic (Ant Colony and Pattern Search based) Controller.

A. Conventional Controller

Zhuang and Atherton were proposed optimum setting algorithms for a PID controller. The general form of the optimum criterion is

\[J_n(\Theta) = \int_0^\infty t^n |e(\Theta, t)|^2 dt \] \((10) \)

Where \(\Theta \) is the PID controller parameter vector and \(e(\Theta, t) \) is the error which passes through controller. There are three different optimum criteria for tuning of PID controller, those are Integral Squared Error (ISE) criterion, Integral Squared Time weighted Error (ISTE) criterion and Integral Squared and Time Squired Error (ISTE) criterion. The optimal parameters are obtained by minimizing the above equation [10].

B. Metaheuristic Methods

Recently, most of the researchers focused on new algorithms called Metaheuristic. A Metaheuristic is a set of algorithm concepts that can be used to define heuristic methods applicable to wide set of different applications. The use of Metaheuristic has significantly increased the ability of finding very high quality solutions to hard and practically relevant combinatorial optimization problems in a reasonable time [11].

1) **Ant Colony Optimization:**

A particularly successful Metaheuristic inspired by the behavior of real Ants. Starting Ant system, a number of algorithmic approaches based on the very same ideas were developed and applied with considerable success to a variety of combinatorial optimization problems from academic as well as from real world applications. The ACO Metaheuristic has been
proposed as a common framework for the existing applications and algorithmic variants of a variety of Ant algorithms. Ants are able to find the shortest path between a food source and the nest without the aid of visual information, and also to adapt to a changing environment. It was found that the way ants communicate with each other is based on pheromone trails. While ants move, they drop a certain amount of pheromone on the floor, leaving behind a trail of this substance that can be followed by other ants. The more ants follow a pheromone trail, the more attractive the trail becomes to be followed in the near future. The basic idea is illustrated in Fig.8.

Two ants start from their nest (left) and look for the shortest path to a food source (right). Initially, no pheromone is present on either trails, so there is the same chance of choosing either of the two possible paths. Suppose one ant chooses the upper trail, and the other one the lower trail. The ant that has chosen the upper (shorter) trail will have returned faster to the nest. As a result, there is a greater amount of pheromone on the upper trail as on the lower one. The probability that the next ant will choose the upper (shorter) trail will be higher. More ants will choose this trail, until all (majority) ants will follow the shorter path.

Figure 8 (a) Real ants follow a path between nest and food source. (b) An obstacle appears on the path: Ants choose whether to turn left or right with equal probability. (c) Pheromone is deposited more quickly on the shorter path. (d) All ants have chosen the shorter path.

The following algorithmic skeleton shows the pseudo-code for Ant Colony Algorithm for optimization problems [11].

Procedure ACO Metaheuristic
Set parameters, initialize pheromone trails
while (termination condition not met) do
Construct Ants Solutions
Apply Local Search % optional
Update Pheromones
end
end

In this paper, Number of Ants (NA) is 100, Number of Iterations (ITR) are 100, Number of parameters are 3 and evaporation rate (ρ) is 0.95. The simple flowcharts of Ant Colony and Pattern Search Optimization are shown in Figures 9(a) and 9(b) respectively.

2) Pattern Search:
The Pattern Search (PS) Algorithm generates a sequence of iterates with non-increasing objective function values. Iteration is divided into two phases: an optional search and a local poll.
In the search step \(f(s) \) is evaluated at a finite number of points on a mesh to one that yields a lower \(f(s) \) value than the incumbent. Mesh is a discrete subset of bounded search space with lower and upper boundaries.

Mesh:

\[
M_k = \{ S_k + \Delta_k D_z : z \in Z^+ \} ; \quad (a)
\]

Where \(D \) is a +ve spanning set, \(\Delta_k \) is mesh size parameter, \(S_k \) is a mesh local optimizer.

Poll set:

\[
\{ S_k + \Delta_k d : d \in D_k \} \quad (b)
\]

Pseudo code of Pattern Search Algorithm

Step - I : Let \(S_0 \) be such that \(f(S_0) \) is finite and \(M_0 \) be the initial mesh defined by \(\Delta_0 > 0 \), & \(D_0 \). Set the iteration counter \(k \) to 0.

Step - II : Perform the search and possibly the poll steps until an improved mesh point \(S_{k+1} \) with the lowest so far \(f(s) \) values is found on the mesh \(M_k \) defined by Eq.(a). Evaluate \(f(s) \) on the poll set defined in Eq.(b).

Step-III : If the search or the pole produced an improved mesh point, i.e a feasible iterate \(x_{k+1} \in M_k \cap \Omega \) for which \(f(S_{k+1}) < f(S_k) \), then update \(\Delta_{k+1} \geq \Delta_k \) by \(\Delta_{k+1} \geq T^{w_k} \Delta_k \).

For \(0 < T^{w_k} < 1 \) where \(T > 1 \) is a rational number that remains constant over all iterations, and \(w_k \geq 0 \) is an integer. If, \(f(S_k) < f(S_k + \Delta_k d) \) for all \(d \in D_k \), set \(S_{k+1} = S_k \), update \(\Delta_{k+1} < \Delta_k \) by \(w_k \leq -1 \).

Increase \(k \) by \(k+1 \) and go back to **Step-I**.

In order find the Performance Index of all above controllers, Integral of Time multiply Absolute Error (ITAE) of deviations of frequency and tie-line power of all area were considered as objective function. Accordingly, the objective function is defined as

\[
J = \int_0^{t_s} t(\Delta f_i + \Delta P_{tieij})^2 \, dt \quad (9)
\]

Where \(t_s \) is simulation time.

Above objective function is minimized by considering the following constraints:

\[
K_P^{\text{min}} < K_P < K_P^{\text{max}} \quad K_f^{\text{min}} < K_I < K_f^{\text{max}} \quad K_D^{\text{min}} < K_D < K_D^{\text{max}}
\]
The optimized values of PID controller using above algorithms are listed in Table 1.

<table>
<thead>
<tr>
<th></th>
<th>Conventional Controller</th>
<th>Ant Colony Optimization</th>
<th>Pattern Search Algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>K_P</td>
<td>K_I</td>
<td>K_D</td>
</tr>
<tr>
<td>Area-I</td>
<td>6.0241</td>
<td>3.6946</td>
<td>0.9717</td>
</tr>
<tr>
<td>Area-II</td>
<td>2.7969</td>
<td>3.7178</td>
<td>0.4173</td>
</tr>
<tr>
<td>Area-III</td>
<td>5.7858</td>
<td>3.7821</td>
<td>0.9095</td>
</tr>
</tbody>
</table>

IV. RESULTS AND ANALYSIS

The performance and validity of the designed controllers are explained by the following illustrations by considering various step load variations in three area interconnected electric power system having different turbines in respective areas. The parameters of all three areas are collected from various steam power stations in India and are shown in appendix-I.

A. Illustration -I

Let the step load perturbations as $dP_{L1} = 0.01$pu, $dP_{L2} = 0.01$pu and $dP_{L3} = 0.01$pu are applied to Area-I, Area-II and Area-III respectively at $t = 0$sec. The figures from 10(a) to 10(c) shows the variations in frequency for applied load power disturbances in three areas respectively. Similarly, the figures from 11(a) to 11(c) shows the variations in Tie Line Power variations for applied load power disturbances in three areas respectively.

![Figure 10(a). Frequency variations in Area-I, df1 (Hz)](image)

![Figure 10(b). Frequency variations in Area-II, df2 (Hz)](image)
Figure 10(c). Frequency variations in Area-III, df3 (Hz)

Figure 11 (a) -11(c) shows Tie-Line Power variations in three areas for \(dP_{L1} = dP_{L2} = dP_{L3} = 0.01 \)

Figure 12 (a) -12(c) shows Tie-Line Power variations in three areas for \(dP_{L1} = 0.01, dP_{L2} = 0.1\text{pu} \) and \(dP_{L3} = 0.15\text{pu} \)
B. Illustration -II
Now let the step load perturbations as $dP_{L1} = 0.01\text{pu}$, $dP_{L2} = 0.05\text{pu}$ and $dP_{L3} = 0.1\text{pu}$ are applied to Area-I, Area-II and Area-III respectively at $t = 0\text{sec}$. The figures from 13(a) to 13(c) shows the variations in frequency for applied load power disturbances in all three areas respectively. Similarly, the figures from 12(a) to 12(c) shows the variations in Tie Line Power variations for applied load power disturbances in all three areas respectively.

Figure 13(a). Frequency variations in Area-I, df_1 (Hz)

Figure 13(b). Frequency variations in Area-II, df_2 (Hz)

Figure 13(c). Frequency variations in Area-III, df_3 (Hz)
Including above simulation results, to check the performance and validity of the designed controller, additional simulation also done for various step loads and its performance is listed in below from Table 2 to Table 4.

TABLE II PERFORMANCE OF THREE AREA ELECTRIC POWER SYSTEM WITH \(dP_{L1} = dP_{L2} = dP_{L3} = 0.02\text{pu}\)

<table>
<thead>
<tr>
<th>Area-i</th>
<th>Conventional Controller</th>
<th>Ant Colony Optimization (ACO)</th>
<th>Pattern Search Algorithm (PSA)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1st peak over shoot</td>
<td>Settle Time</td>
<td>1st peak over shoot</td>
</tr>
<tr>
<td>Area-I</td>
<td>-0.0136</td>
<td>17.80</td>
<td>-0.0107</td>
</tr>
<tr>
<td>Area-II</td>
<td>-0.0112</td>
<td>17.20</td>
<td>-0.0063</td>
</tr>
<tr>
<td>Area-III</td>
<td>-0.0128</td>
<td>17.52</td>
<td>-0.0105</td>
</tr>
</tbody>
</table>

TABLE III PERFORMANCE OF THREE AREA ELECTRIC POWER SYSTEM WITH \(dP_{L1} = 0.01, dP_{L2} = 0.05 dP_{L3} = 0.1\)

<table>
<thead>
<tr>
<th>Area-i</th>
<th>Conventional Controller</th>
<th>Ant Colony Optimization (ACO)</th>
<th>Pattern Search Algorithm (PSA)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1st peak over shoot</td>
<td>Settle Time</td>
<td>1st peak over shoot</td>
</tr>
<tr>
<td>Area-I</td>
<td>-0.0607</td>
<td>23.21</td>
<td>-0.0372</td>
</tr>
<tr>
<td>Area-II</td>
<td>-0.0558</td>
<td>22.00</td>
<td>-0.0308</td>
</tr>
<tr>
<td>Area-III</td>
<td>-0.0964</td>
<td>22.10</td>
<td>-0.0771</td>
</tr>
</tbody>
</table>

TABLE IV PERFORMANCE OF THREE AREA ELECTRIC POWER SYSTEM WITH \(dP_{L1} = dP_{L2} = dP_{L3} = 0.095\text{pu}\)

<table>
<thead>
<tr>
<th>Area-i</th>
<th>Conventional Controller</th>
<th>Ant Colony Optimization (ACO)</th>
<th>Pattern Search Algorithm (PSA)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1st peak over shoot</td>
<td>Settle Time</td>
<td>1st peak over shoot</td>
</tr>
<tr>
<td>Area-I</td>
<td>-0.1360</td>
<td>16.30</td>
<td>-0.0106</td>
</tr>
<tr>
<td>Area-II</td>
<td>-0.1118</td>
<td>18.60</td>
<td>-0.0758</td>
</tr>
<tr>
<td>Area-III</td>
<td>-0.1156</td>
<td>18.80</td>
<td>-0.0872</td>
</tr>
</tbody>
</table>

(% age) Improvement in performance in terms of settle time

V. CONCLUSION

In this paper tuning PID controller using metaheuristic algorithms has been proposed for load frequency control of interconnected electric power systems. From the simulation result, it can be concluded that the metaheuristic controllers gives superior and better results than conventional controller. The Metaheuristic controller exhibits good performance and have more validity than that of conventional controller for various load variations. In Metaheuristic controllers, Pattern Search algorithm gives better performance of three area interconnected power system with various step load variations than Ant Colony Optimization and Conventional controller

Appendix - I

The nominal parameters of Reheat and Non-Reheat Turbines are collected from various Thermal power plants in India and are as shown below Table 5. Area-I data is collected from Sothern Grid and Neively Lignite Corporation, Tamil Nadu, India. Area-II data is from RTPP, A.P. India.
Table 5. Nominar parameters of turbine in all three areas.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Area-I</th>
<th>Area-II</th>
<th>Area-III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speed Governor Time constant</td>
<td>0.08</td>
<td>0.08</td>
<td>0.08</td>
</tr>
<tr>
<td>Speed Governor Regulation</td>
<td>2.4</td>
<td>2</td>
<td>2.4</td>
</tr>
<tr>
<td>Power System Gain Constant</td>
<td>20</td>
<td>15</td>
<td>20</td>
</tr>
<tr>
<td>Turbine Time Constant</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>Coefficient of reheat steam turbine (HP)</td>
<td>0.3</td>
<td>-</td>
<td>0.53</td>
</tr>
<tr>
<td>Reheat Time Constant (LP)</td>
<td>10</td>
<td>-</td>
<td>10</td>
</tr>
</tbody>
</table>

Rated capacity $P_r = 2000$MW; $P_{t_{i_{\text{max}}}}=200$ MW; $(\delta_1 - \delta_2) = 30^\circ$; Rated frequency $f^0 = 60$Hz $D_i = 8.33 \times 10^{-3}$; Syn. Co-efficient $T_{ij} = 0.545$.

Nomenclature:

ALFC = Automatic Load Frequency Control.

$P_D = $ Active Power Demand.

$Q_D = $ Reactive Power Demand.

Δf = Change in frequency.

T_{sg} = Speed Governor Time Constant.

T_{trt} = Reheat Turbine Time Constant.

T_{nrt} = Non-Reheat Turbine Time Constant.

K_{sg} = Speed Governor Gain.

K_{ps} = Power System Gain.

T_{ps} = Power System Speed Governor.

ΔP_L = Change in Load Demand.

$ACE = $ Area Control Error.

$B_i = D_i + 1/R_i$

REFERENCES

